Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38306679

RESUMO

Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.


Assuntos
Osteogênese , Tecidos Suporte , Humanos , Tecidos Suporte/química , Engenharia Tecidual/métodos , Regeneração Óssea , Poliésteres/química , Impressão Tridimensional
2.
Mater Today Bio ; 21: 100685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545560

RESUMO

Extrusion-based bioprinting technology is widely used for tissue regeneration and reconstruction. However, the method that uses only hydrogel as the bioink base material exhibits limited biofunctional properties and needs improvement to achieve the desired tissue regeneration. In this study, we present a three-dimensionally printed bioactive microparticle-loaded scaffold for use in bone regeneration applications. The unique structure of the microparticles provided sustained release of growth factor for > 4 weeks without the use of toxic or harmful substances. Before and after printing, the optimal particle ratio in the bioink for cell viability demonstrated a survival rate of ≥ 85% over 7 days. Notably, osteogenic differentiation and mineralization-mediated by human periosteum-derived cells in scaffolds with bioactive microparticles-increased over a 2-week interval. Here, we present an alternative bioprinting strategy that uses the sustained release of bioactive microparticles to improve biofunctional properties in a manner that is acceptable for clinical bone regeneration applications.

3.
J Biomater Appl ; 37(6): 1054-1070, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547265

RESUMO

Elastin is very rarely repaired extracellular matrix (ECM) in physiological condition. The commercial human elastin for exogenous medical treatment is very expensive, and has a potential for disease transmission. Animal-origin elastin is relatively low price, but has concerns for xenogeneic immune responses. Considering cost and safety, we focused on the perirenal adipose tissue, donated from healthy young people via donor nephrectomy. Until now, all of the perirenal adipose tissues are discarded as a medical waste after kidney transplantation. In the present study, we applied perirenal adipose tissues as the source of human elastin, and optimized the extraction process to get high purified and quantified elastin. Through pre-processing step, the delipidated and decellularized ECM was prepared. Next, with four different elastin extraction process (acidic solvents, neutral salt, organic solvents or hot alkali method), elastin was extracted, and the concentration of amino acid between each product was compared, and bright-field/electron microscopy, Fourier transform infrared (FT-IR) spectroscopy and cytotoxicity analysis were also performed. As controls, bovine neck ligament-derived and human skin-derived elastin were used. Among the elastin extraction methods, the hot alkali insoluble product showed (1) relatively high positive area of Verhoeff's and low Masson's trichrome stain, (2) 64.24% purity, 159.29 mg/g quantity, and ∼6.37% yield in amino acid analysis, (3) ß-sheet second structure, and (4) thin fiber composed mesh-like sheet structure in SEM image. These values were higher than those of the commercial human skin elastin. When comparing hydrolyzed forms, α-elastin from hot alkali insoluble product showed enhanced cell proliferation and maintained cell properties compared to the κ-elastin. Therefore, we confirmed that the perirenal adipose tissue is an ideal source of human elastin with safety assurance, and the hot alkali process combined with pre-process seems to be the optimal method for elastin extraction with high purity and quantity.


Assuntos
Tecido Adiposo , Elastina , Humanos , Animais , Bovinos , Adolescente , Espectroscopia de Infravermelho com Transformada de Fourier , Aminoácidos , Solventes
4.
ACS Biomater Sci Eng ; 8(12): 5233-5244, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36384281

RESUMO

Even though bony defects can be recovered to their original condition with full functionality, critical-sized bone injuries continue to be a challenge in clinical fields due to deficiencies in the scaffolding matrix and growth factors at the injury region. In this study, we prepared bone morphogenetic protein-2 (BMP-2)-loaded porous particles as a bioactive bone graft for accelerated bone regeneration. The porous particles with unique leaf-stacked morphology (LSS particles) were fabricated by a simple cooling procedure of hot polycaprolactone (PCL) solution. The unique leaf-stacked structure in the LSS particles provided a large surface area and complex release path for the sufficient immobilization of BMP-2 and sustained release of BMP-2 for 26 days. The LSS was also recognized as a topographical cue for cell adhesion and differentiation. In in vitro cell culture and in vivo animal study using a canine mandible defect model, BMP-2-immobilized LSS particles provided a favorable environment for osteogenic differentiation of stem cells and bone regeneration. In vitro study suggests a dual stimulus of bone mineral-like (leaf-stacked) structure (a physical cue) and continuously supplied BMP-2 (a biological cue) to be the cause of this improved healing outcome. Thus, LSS particles containing BMP-2 can be a promising bioactive grafting material for effective new bone formation.


Assuntos
Regeneração Óssea , Osteogênese , Animais , Cães , Porosidade
5.
World Neurosurg ; 162: e73-e85, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35202877

RESUMO

OBJECTIVE: Kyphoplasty (KP) is a surgery used to reduce pain and increase stability by injecting medical bone cement into broken vertebrae. The purpose of this study was to determine the ideal amount of cement and injection site by analyzing forces with the finite element method. METHODS: We modeled the anatomical structure of the vertebra and injected the cement at T12. By increasing the amount of cement from 1 cc to 22 cc, stress applied to T11 and L1 cortical was calculated. In addition, stress applied to the adjacent KP level was calculated with different injection sites (medial, anterosuperior, posterosuperior, anteroinferior, and posteroinferior). After 5 cc cement was inserted, adjacent end plate stress was analyzed. RESULTS: In this study, break point adjacent bone stress according to the capacity of cement was bimodal. Flexion/extension and lateral bending conditions showed similar break points (11.5-11.7 cc and 18.5-18.6 cc, respectively). When cement injection was changed, front under and back under had the highest stress values among various parts, whereas the center position showed the lowest stress value. CONCLUSIONS: With increasing amount of bone cement, stress on the upper and lower end plates of the cemented segment increased significantly. Thus, increasing cement amount to be more than 11.5 cc has a potential risk of adjacent fracture. Centrally injected bone cement can lower the risk of adjacent fracture after percutaneous KP.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Cimentos Ósseos , Análise de Elementos Finitos , Fraturas por Compressão/cirurgia , Humanos , Fraturas por Osteoporose/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Coluna Vertebral/cirurgia
6.
Stem Cells Int ; 2021: 9326298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512768

RESUMO

Human dental pulp stem cells (hDPSCs) are the primary cells responsible for dentin regeneration. Typically, in order to allow for odontoblastic differentiation, hDPSCs are cultured over weeks with differentiation-inducing factors in a typical monolayered culture. However, monolayered cultures have significant drawbacks including inconsistent differentiation efficiency, require a higher BMP concentration than should be necessary, and require periodic treatment with BMPs for weeks to see results. To solve these problems, we developed a 3D-cell spheroid culture system for odontoblastic differentiation using microparticles with leaf-stacked structure (LSS), which allow for the sustained release of BMPs and adequate supply of oxygen in cell spheroids. BMPs were continuously released and maintained an effective concentration over 37 days. hDPSCs in the spheroid maintained their viability for 5 weeks, and the odontoblastic differentiation efficiency was increased significantly compared to monolayered cells. Finally, dentin-related features were detected in the spheroids containing BMPs-loaded microparticles after 5 weeks, suggesting that these hDPSC-LSS spheroids might be useful for dentin tissue regeneration.

7.
Life (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946199

RESUMO

Coupling between osteoblast-mediated bone formation and osteoclast-mediated bone resorption maintains both mechanical integrity and mineral homeostasis. Zinc is required for the formation, mineralization, growth, and maintenance of bones. We examined the effects of zinc sulfate on osteoblastic differentiation of human periosteum-derived cells (hPDCs) and osteoclastic differentiation of THP-1 cells. Zinc sulfate enhanced the osteoblastic differentiation of hPDCs; however, it did not affect the osteoclastic differentiation of THP-1 cells. The levels of extracellular signaling-related kinase (ERK) were strongly increased during osteoblastic differentiation in zinc sulfate-treated hPDCs, compared with other mitogen-activated protein kinases (MAPKs). Zinc sulfate also promoted osteogenesis in hPDCs and THP-1 cells co-cultured with the ratio of one osteoclast to one osteoblast, as indicated by alkaline phosphatase levels, mineralization, and cellular calcium contents. In addition, the receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio was decreased in the zinc sulfate-treated co-cultures. Our results suggest that zinc sulfate enhances osteogenesis directly by promoting osteoblastic differentiation and osteogenic activities in osteoblasts and indirectly by inhibiting osteoclastic bone resorption through a reduced RANKL/OPG ratio in co-cultured osteoblasts and osteoclasts.

8.
Biomater Sci ; 9(10): 3675-3691, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33899852

RESUMO

It is accepted that biomimetic supply of signaling molecules during bone regeneration can provide an appropriate environment for accelerated new bone formation. In this study, we developed a growth factor delivery system based on porous particles and a thermosensitive hydrogel that allowed fast, continuous, and delayed/continuous release of growth factors to mimic their biological production during bone regeneration. It was observed that the Continuous group (continuous release of growth factors) provides a better environment for the osteogenic differentiation of hPDCs than the Biomimetic group (biomimetic release of growth factors), and thus is anticipated to promote bone regeneration. However, contrary to expectation, the Biomimetic group promoted significant new bone formation compared to the Continuous group. From the systematic cell culture experiments, the initial supply of VEGF was considered to have more favorable effects on the osteoclastogenesis than osteogenesis, which may hinder bone regeneration. Our results indicated that the continuous supply of VEGF (in particular, at early stage) from VEGF-loaded biomaterial might not be conducive to new bone formation. Therefore, we suggest that a biomimetic supply of growth factors is a more pivotal parameter for sufficient tissue regeneration. Its use as a molecular delivery system may also serve as a useful tool for the investigation of biological processes and molecules during tissue regeneration processes.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Biomimética , Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular , Tecidos Suporte
9.
Tissue Eng Part A ; 27(1-2): 50-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122268

RESUMO

Erectile dysfunction caused by damage to the cavernous nerve is a common complication of radical prostatectomy for patients with localized prostate cancer. Various studies have investigated repair of damaged tissue and prevention of fibrosis in the corpus cavernosum using stem cell therapy. However, stem cell therapy has limitations, including insufficient nutrient and oxygen supply to transplanted stem cells. This study investigated whether stem cell/oxygen-releasing hollow microparticles (HPs) had therapeutic effect on erectile dysfunction in a rat model of bilateral cavernous nerve injury (BCNI). Therapeutic effects were observed in the BCNI model at 1, 2, and 4 weeks postcavernous nerve injury. Erectile function further improved after treatment with stem cell/oxygen-releasing HP system compared with treatment with only stem cells at 4 weeks. Stem cell/oxygen-releasing HP system increased cyclic guanosine monophosphate (cGMP) level and neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), α-smooth muscle actin (α-SMA), and muscarinic acetylcholine receptor 3 (M3) expression while decreasing fibrosis and apoptosis in the corpus cavernosum. Our results clearly show that stem cell survival increases around transplanted stem cell/oxygen-releasing hybrid system site. Taken together, an oxygen-releasing HP system supported prolonged stem cell survival, sustaining the paracrine effect of the stem cells, and consequently enhancing erectile function. These findings show promise with regard to prolonged stem cell survival in stem cell applications for various diseases and types of tissue damage. Impact statement In this study, we used an oxygen-releasing hollow microparticles (HPs) system with stem cells to attempt to overcome certain limitations of stem cell therapy, including insufficient nutrient and oxygen supplies for transplanted stem cells. Our results demonstrated that a stem cell/oxygen-releasing HP hybrid system could further improve erectile function, cyclic guanosine monophosphate (cGMP) level, and NOS level in a bilateral cavernous nerve injury rat model through prolonged stem cell survival. Our data suggest that a stem cell/oxygen-releasing HP system is a promising clinical treatment option for postprostatectomy erectile dysfunction. Furthermore, this system may be relevant in different disease therapies and regenerative medicine.


Assuntos
Disfunção Erétil , Animais , Modelos Animais de Doenças , Disfunção Erétil/terapia , Humanos , Masculino , Oxigênio , Ereção Peniana , Ratos , Ratos Sprague-Dawley , Células-Tronco
10.
Macromol Biosci ; 20(12): e2000256, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164317

RESUMO

3D printed scaffolds composed of gelatin and ß-tri-calcium phosphate (ß-TCP) as a biomimetic bone material are fabricated, thereby providing an environment appropriate for bone regeneration. The Ca2+ in ß-TCP and COO- in gelatin form a stable electrostatic interaction, and the composite scaffold shows suitable rheological properties for bioprinting. The gelatin/ß-TCP scaffold is crosslinked with glutaraldehyde vapor and unreacted aldehyde groups which can cause toxicity to cells is removed by a glycine washing. The stable binding of the hydrogel is revealed as a result of FTIR and degradation rate. It is confirmed that the composite scaffold has compressive strength similar to that of cancellous bone and 60 wt% ß-TCP groups containing 40 wt% gelatin have good cellular activity with preosteoblasts. Also, in the animal experiments, the gelatin/ß-TCP scaffold confirms to induce bone formation without any inflammatory responses. This study suggests that these fabricated scaffolds can serve as a potential bone substitute for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Tecidos Suporte/química , Células 3T3 , Animais , Bioimpressão , Regeneração Óssea/fisiologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Gelatina/farmacologia , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia , Impressão Tridimensional
11.
J Korean Med Sci ; 35(41): e374, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33107231

RESUMO

BACKGROUND: Tissue engineering can be used for bladder augmentation. However, conventional scaffolds result in fibrosis and graft shrinkage. This study applied an alternative polycaprolactone (PCL)-based scaffold (diameter = 5 mm) with a noble gradient structure and growth factors (GFs) (epidermal growth factor, vascular endothelial growth factor, and basic fibroblast growth factor) to enhance bladder tissue regeneration in a rat model. METHODS: Partially excised urinary bladders of 5-week-old male Slc:SD rats were reconstructed with the scaffold (scaffold group) or the scaffold combined with GFs (GF group) and compared with sham-operated (control group) and untreated rats (partial cystectomy group). Evaluations of bladder volume, histology, immunohistochemistry (IHC), and molecular markers were performed at 4, 8, and 12 weeks after operation. RESULTS: The bladder volumes of the scaffold and GF group recovered to the normal range, and those of the GF group showed more enhanced augmentation. Histological evaluations revealed that the GF group showed more organized urothelial lining, dense extracellular matrix, frequent angiogenesis, and enhanced smooth muscle bundle regeneration than the scaffold group. IHC for α-smooth muscle actin, pan-cytokeratin, α-bungarotoxin, and CD8 revealed that the GF group showed high formation of smooth muscle, blood vessel, urothelium, neuromuscular junction and low immunogenicity. Concordantly, real-time polymerase chain reaction experiments revealed that the GF group showed a higher expression of transcripts associated with smooth muscle and urothelial differentiation. In a 6-month in vivo safety analysis, the GF group showed normal histology. CONCLUSION: This study showed that a PCL scaffold with a gradient structure incorporating GFs improved bladder regeneration functionally and histologically.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Poliésteres/química , Regeneração/efeitos dos fármacos , Bexiga Urinária/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Cistectomia , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica , Queratinas/genética , Queratinas/metabolismo , Masculino , Músculo Liso/citologia , Músculo Liso/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/patologia , Bexiga Urinária/cirurgia , Urotélio/citologia , Urotélio/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Biomacromolecules ; 21(12): 4795-4805, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955865

RESUMO

Although biological therapies based on growth factors and transplanted cells have demonstrated some positive outcomes for intervertebral disc (IVD) regeneration, repeated injection of growth factors and cell leakage from the injection site remain considerable challenges for human therapeutic use. Herein, we prepare human bone marrow-derived mesenchymal stem cells (hBMSCs) and transforming growth factor-ß3 (TGF-ß3)-loaded porous particles with a unique leaf-stack structural morphology (LSS particles) as a combination bioactive delivery matrix for degenerated IVD. The LSS particles are fabricated with clinically acceptable biomaterials (polycaprolactone and tetraglycol) and procedures (simple heating and cooling). The LSS particles allow sustained release of TGF-ß3 for 18 days and stable cell adhesiveness without additional modifications of the particles. On the basis of in vitro and in vivo studies, it was observed that the hBMSCs/TGF-ß3-loaded LSS particles can provide a suitable milieu for chondrogenic differentiation of hBMSCs and effectively induce IVD regeneration in a beagle dog model. Thus, therapeutically loaded LSS particles offer the promise of an effective bioactive delivery system for regeneration of various tissues including IVD.


Assuntos
Disco Intervertebral , Células-Tronco Mesenquimais , Regeneração , Fator de Crescimento Transformador beta3/farmacologia , Animais , Diferenciação Celular , Cães , Humanos , Porosidade
13.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751648

RESUMO

Nuclear factor kappa B (NF-κB) regulates inflammatory gene expression and represents a likely target for novel disease treatment approaches, including skeletal disorders. Several plant-derived sesquiterpene lactones can inhibit the activation of NF-κB. Parthenolide (PTL) is an abundant sesquiterpene lactone, found in Mexican Indian Asteraceae family plants, with reported anti-inflammatory activity, through the inhibition of a common step in the NF-κB activation pathway. This study examined the effects of PTL on the enhanced, in vitro, osteogenic phenotypes of human periosteum-derived cells (hPDCs), mediated by the inflammatory cytokine tumor necrosis factor (TNF)-α. PTL had no significant effects on hPDC viability or osteoblastic activities, whereas TNF-α had positive effects on the in vitro osteoblastic differentiation of hPDCs. c-Jun N-terminal kinase (JNK) signaling played an important role in the enhanced osteoblastic differentiation of TNF-α-treated hPDCs. Treatment with 1 µM PTL did not affect TNF-α-treated hPDCs; however, 5 and 10 µM PTL treatment decreased the histochemical detection and activity of alkaline phosphatase (ALP), alizarin red-positive mineralization, and the expression of ALP and osteocalcin mRNA. JNK phosphorylation decreased significantly in TNF-α-treated hPDCs pretreated with PTL. These results suggested that PTL exerts negative effects on the increased osteoblastic differentiation of TNF-α-treated hPDCs by inhibiting JNK signaling.


Assuntos
Asteraceae/química , Inflamação/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Sesquiterpenos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hidrolases/genética , Inflamação/genética , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno , Lactonas/química , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases , NF-kappa B , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , Periósteo/efeitos dos fármacos , Periósteo/crescimento & desenvolvimento , Fenótipo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Sesquiterpenos/química , Fator de Necrose Tumoral alfa/genética
15.
ACS Biomater Sci Eng ; 6(9): 5172-5180, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455267

RESUMO

The purpose of this study is to develop a bioactive bone graft based on polycaprolactone (PCL, synthetic polymer; used in clinical practices as a grafting material for craniofacial bone defects) and hyaluronic acid (HA, bioactive natural polymer; known as a promoting substance for bone regeneration) that would be fabricated by clinically available procedures (mild condition without toxic chemicals) and provide bioactivity for sufficient period, and thus effectively induce bone reconstruction. For this, PCL/HA hybrid microspheres were produced by a spray-precipitation technique using clinically adapted solvents. The HA was stably and evenly entrapped in the PCL/HA hybrid microspheres. It was demonstrated that the PCL/HA hybrid microspheres provide an appropriate environment for proliferation and osteogenic differentiation of human periosteum-derived cells (hPDCs) (in vitro) and allow significantly enhanced bone regeneration (in vivo) compared with PCL microspheres without HA. The PCL/HA hybrid microspheres can be a simple but clinically applicable bioactive bone graft for large-sized bone defects.


Assuntos
Regeneração Óssea , Osteogênese , Osso e Ossos , Diferenciação Celular , Humanos , Microesferas
16.
ACS Biomater Sci Eng ; 6(4): 2231-2239, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455335

RESUMO

The ultimate purpose of this study was to develop a bioactive filler system that would allow volume restoration (passive property) and continuous release of signaling molecules to recruit soft tissues (bioactive property) and thus effectively correct facial aging. To achieve this, we prepared porous particles with a leaf-stacked structure throughout the entire particle volume (LSS particles) using a simple heating-cooling technique. LSS particles were loaded with insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) separately, by immersing the particles in signaling molecule-containing solutions for target tissue recruitment (adipose by IGF-1 and blood vessels by VEGF). IGF-1 and VEGF were continuously released from LSS particles for 28 and 21 days in vitro, respectively, even without additional chemical/physical modifications, because of the unique morphology of the particles. Signaling molecules preserved their bioactivity in vitro (induction of adipogenic and angiogenic differentiation) and in vivo (recruitment of fat and blood vessels) for a sufficient period. Moreover, it was observed that the LSS particles themselves have stable volume retention characteristics in the body. Thus, we suggest that the signaling molecule-loaded LSS particles can function as a bioactive filler system for volume retention and target tissue regeneration.


Assuntos
Tecido Adiposo , Folhas de Planta , Fator A de Crescimento do Endotélio Vascular , Materiais Biocompatíveis , Diferenciação Celular , Porosidade
17.
Tissue Eng Regen Med ; 16(5): 479-490, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31624703

RESUMO

Background: Despite the development of progressive surgical techniques and antibiotics, osteomyelitis is a big challenge for orthopedic surgeons. The main aim of this study is to fabricate an in situ gelling hydrogel that permits sustained release of antibiotic (for control of infection) and growth factor (for induction of new bone formation) for effective treatment of osteomyelitis. Methods: An in situ gelling alginate (ALG)/hyaluronic acid (HA) hydrogel containing vancomycin (antibiotic) and bone morphogenetic protein-2 (BMP-2; growth factor) was prepared by simple mixing of ALG/HA/Na2HPO4 solution and CaSO4/vancomycin/BMP-2 solution. The release behaviors of vancomycin and BMP-2, anti-bacterial effect (in vitro); and therapeutic efficiency for osteomyelitis and bone regeneration (in vivo, osteomyelitis rat model) of the vancomycin and BMP-2-incorporated ALG/HA hydrogel were investigated. Results: The gelation time of the ALG/HA hydrogel was controlled into approximately 4 min, which is sufficient time for handling and injection into osteomyelitis lesion. Both vancomycin and BMP-2 were continuously released from the hydrogel for 6 weeks. From the in vitro studies, the ALG/HA hydrogel showed an effective anti-bacterial activity without significant cytotoxicity for 6 weeks. From an in vivo animal study using Sprague-Dawley rats with osteomyelitis in femur as a model animal, it was demonstrated that the ALG/HA hydrogel was effective for suppressing bacteria (Staphylococcus aureus) proliferation at the osteomyelitis lesion and enhancing bone regeneration without additional bone grafts. Conclusions: From the results, we suggest that the in situ gelling ALG/HA hydrogel containing vancomycin and BMP-2 can be a feasible therapeutic tool to treat osteomyelitis.


Assuntos
Antibacterianos/química , Antibacterianos/uso terapêutico , Hidrogéis/química , Osteomielite/tratamento farmacológico , Alginatos/química , Animais , Ácido Hialurônico/química , Osteomielite/microbiologia , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Vancomicina/química , Vancomicina/uso terapêutico , Cicatrização/efeitos dos fármacos
18.
J Biomed Mater Res A ; 107(10): 2183-2194, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31116505

RESUMO

Hypoxia and limited vascularization inhibit bone growth and recovery after surgical debridement to treat osteomyelitis. Similarly, despite significant efforts to create functional tissue-engineered organs, clinical success is often hindered by insufficient oxygen diffusion and poor vascularization. To overcome these shortcomings, we previously used the oxygen carrier perfluorooctane (PFO) to develop PFO emulsion-loaded hollow microparticles (PFO-HPs). PFO-HPs act as a local oxygen source that increase cell viability and maintains the osteogenic differentiation potency of human periosteum-derived cells (hPDCs) under hypoxic conditions. In the present study, we used a miniature pig model of mandibular osteomyelitis to investigate bone regeneration using hPDCs seeded on PFO-HPs (hPDCs/PFO-HP) or hPDCs seeded on phosphate-buffered saline (PBS)-HPs (hPDCs/PBS-HP). Osteomyelitis is characterized by a series of microbial invasion, vascular disruption, bony necrosis, and sequestrum formation due to impaired host defense response. Sequential plain radiography, computed tomography (CT), and 3D reconstructed CT images revealed new bone formation was more advanced in defects that had been implanted with the hPDCs/PFO-HPs than in defects implanted with the hPDCs/PBS-HP. Thus, PFO-HPs are a promising tissue engineering approach to repair challenging bone defects and regenerate structurally organized bone tissue with 3D architecture.


Assuntos
Regeneração Óssea/fisiologia , Mandíbula/patologia , Microesferas , Osteoblastos/citologia , Osteomielite/terapia , Oxigênio/farmacologia , Periósteo/citologia , Animais , Regeneração Óssea/efeitos dos fármacos , Soluções Tampão , Modelos Animais de Doenças , Fluorocarbonos/química , Humanos , Mandíbula/diagnóstico por imagem , Mandíbula/efeitos dos fármacos , Mandíbula/microbiologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteomielite/diagnóstico por imagem , Osteomielite/microbiologia , Osteomielite/patologia , Implantação de Prótese , Staphylococcus aureus/efeitos dos fármacos , Suínos , Porco Miniatura
19.
Biomacromolecules ; 20(2): 1087-1097, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30642156

RESUMO

Sufficient oxygen delivery into tissue-engineered three-dimensional (3D) scaffolds to produce clinically applicable tissues/organs remains a challenge for researchers and clinicians. One potential strategy to overcome this limitation is the use of an oxygen releasing scaffold. In the present study, we prepared hollow microparticles (HPs) loaded with an emulsion of the oxygen carrier perfluorooctane (PFO; PFO-HPs) for the timely supply of oxygen to surrounding cells. These PFO-HPs prolonged the survival and preserved the osteogenic differentiation potency of human periosteal-derived cells ( hPDCs) under hypoxia. hPDCs seeded onto PFO-HPs formed new bone at a faster rate and with a higher bone density than hPDCs seeded onto phosphate buffered saline-loaded control HPs. These findings suggest that PFO-HPs provide a suitable environment for the survival and maintenance of differentiation ability of hPDCs at bony defects without vascular networks until new blood vessel ingrowth occurs, thus enhancing bone regeneration. PFO-HPs are a promising system for effective delivery of various functional cells, including stem cells and progenitor cells, to regenerate damaged tissues/organs.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Oxigênio/farmacologia , Células Cultivadas , Humanos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Tecidos Suporte
20.
ACS Appl Mater Interfaces ; 10(45): 38780-38790, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30360116

RESUMO

If only allowed to proceed naturally, the bone-healing process can take several weeks, months, or even years depending on the injury size. In terms of bone-healing speed, many studies have been conducted investigating the deliverance of various growth factors of implantable biomaterials to shorten the time for bone regeneration. However, there may be side effects such as nerve pain, infection, or ectopic bone formation. As an alternative method, we focused on biophysical guidance, which provided similar topographical cues to the cellular environment to recruit host cells for bone defect healing. In this study, we hypothesized that aligned nanotopographical features have enhanced osteoblast recruitment, migration, and differentiation without external stimuli. We designed and fabricated a biodegradable poly(lactic- co-glycolic acid) nanopatterned patch using simple solvent casting and capillary force lithography. We confirmed that a biodegradable nanopatterned patch (BNP) accelerated the migration of osteoblasts according to the orientation of the patterned direction. These highly aligned osteoblasts may contribute to in vitro osteogenic differentiation, such as alkaline phosphate activity, mineralization, and calcium deposition, compared to the biodegradable flat patch (BFP). To demonstrate bone defect healing by BNP guidance in vivo, we implanted either whole or bridge BNP on the critical size defect of mouse calvarial ( ø 4 mm) or tibia bone (3 × 7 mm2). Only the BNP-treated group showed faster new bone formation and compact bone regeneration at the calvarial or tibia bone defect area compared to BFP at 4 or 8 weeks. Bridge BNP guided, in particular, the regeneration of new bone formation along the parallel direction of nanopatterned substrates. Here, we show that a BNP with biophysical guidance should be suitable for use in bone tissue regeneration through accelerated migration of the intact host cell.


Assuntos
Implantes Absorvíveis , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Regeneração Óssea/fisiologia , Movimento Celular/efeitos dos fármacos , Fraturas Ósseas/terapia , Camundongos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Ratos , Crânio/efeitos dos fármacos , Crânio/fisiologia , Transplante de Células-Tronco/métodos , Tíbia/efeitos dos fármacos , Tíbia/fisiologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...